CIFAR-10, CIFAR-100 dataset introduction

cifar10_plot

 

Source code is uploaded on github.

CIFAR-10 and CIFAR-100 are the small image datasets with its classification labeled. It is widely used for easy image classification task/benchmark in research community.

In Chainer, CIFAR-10 and CIFAR-100 dataset can be obtained with build-in function.

Setup code: 

 

CIFAR-10

chainer.datasets.get_cifar10 method is prepared in Chainer to get CIFAR-10 dataset. Dataset is automatically downloaded from https://www.cs.toronto.edu only for the first time, and its cache is used from second time.

The dataset structure is quite same with MNIST dataset, it is TupleDataset.
train[i] represents i-th data, there are 50000 training data.
test data structure is same, with 10000 test data.

len(train), type 50000 <class 'chainer.datasets.tuple_dataset.TupleDataset'>
len(test), type 10000 <class 'chainer.datasets.tuple_dataset.TupleDataset'>

train[i] represents i-th data, type=tuple \( (x_i, y_i) \), where \(x_i\) is image data and \(y_i\) is label data.

train[i][0] represents \(x_i\), CIFAR-10 image data, this is 3 dimensional array, (3, 32, 32), which represents RGB channel, width 32 px, height 32 px respectively.

train[i][1] represents \(y_i\), the label of CIFAR-10 image data (scalar), this is scalar value whose actual label can be converted by LABELS_LIST.

Let’s see 0-th data, train[0], in detail.

train[0] <class 'tuple'> 2 train[0][0] (3, 32, 32) [[[ 0.23137257 0.16862746 0.19607845 ..., 0.61960787 0.59607846 0.58039218] [ 0.0627451 0. 0.07058824 ..., 0.48235297 0.4666667 0.4784314 ] [ 0.09803922 0.0627451 0.19215688 ..., 0.46274513 0.47058827 0.42745101] ..., [ 0.81568635 0.78823537 0.77647066 ..., 0.627451 0.21960786 0.20784315] [ 0.70588237 0.67843139 0.72941178 ..., 0.72156864 0.38039219 0.32549021] [ 0.69411767 0.65882355 0.7019608 ..., 0.84705889 0.59215689 0.48235297]] [[ 0.24313727 0.18039216 0.18823531 ..., 0.51764709 0.49019611 0.48627454] [ 0.07843138 0. 0.03137255 ..., 0.34509805 0.32549021 0.34117648] [ 0.09411766 0.02745098 0.10588236 ..., 0.32941177 0.32941177 0.28627452] ..., [ 0.66666669 0.60000002 0.63137257 ..., 0.52156866 0.12156864 0.13333334] [ 0.54509807 0.48235297 0.56470591 ..., 0.58039218 0.24313727 0.20784315] [ 0.56470591 0.50588238 0.55686277 ..., 0.72156864 0.46274513 0.36078432]] [[ 0.24705884 0.17647059 0.16862746 ..., 0.42352945 0.40000004 0.4039216 ] [ 0.07843138 0. 0. ..., 0.21568629 0.19607845 0.22352943] [ 0.08235294 0. 0.03137255 ..., 0.19607845 0.19607845 0.16470589] ..., [ 0.37647063 0.13333334 0.10196079 ..., 0.27450982 0.02745098 0.07843138] [ 0.37647063 0.16470589 0.11764707 ..., 0.36862746 0.13333334 0.13333334] [ 0.45490199 0.36862746 0.34117648 ..., 0.54901963 0.32941177 0.28235295]]]
train[0][1] () 6 -> frog

cifar10_plot_more

 

CIFAR-100

CIFAR-100 is really similar to CIFAR-10. The difference is the number of classified label is 100. chainer.datasets.get_cifar100 method is prepared in Chainer to get CIFAR-100 dataset.

The dataset structure is quite same with MNIST dataset, it is TupleDataset.

train[i] represents i-th data, there are 50000 training data. Total train data is same size while the number of class label increased. So the training data for each class label is fewer than CIFAR-10 dataset.

test data structure is same, with 10000 test data.

len(train_cifar100), type 50000 <class 'chainer.datasets.tuple_dataset.TupleDataset'>
len(test_cifar100), type 10000 <class 'chainer.datasets.tuple_dataset.TupleDataset'>
train_cifar100[0] <class 'tuple'> 2
train_cifar100[0][0] (3, 32, 32)
train_cifar100[0][1] () 19

 

 

Next: CIFAR-10, CIFAR-100 training with Convolutional Neural Network

Sponsored Links

Leave a Reply

Your email address will not be published.