CIFAR-10, CIFAR-100 inference code

  The code structure of inference/predict stage is quite similar to MNIST inference code, please read this for precise explanation. Here, I will simply put the code and its results. CIFAR-10 inference code Code is uploaded on github as

This outputs the result as, You can see that even small CNN, it successfully classifies most […]

Continue reading →

CIFAR-10, CIFAR-100 training with Convolutional Neural Network

  [Update 2017.06.11] Add chainer v2 code Writing your CNN model This is example of small Convolutional Neural Network definition, CNNSmall

  I also made a slightly bigger CNN, called CNNMedium,

  It is nice to know the computational cost for Convolution layer, which is approximated as, $$ H_I \times W_I \times CH_I \times CH_O \times k ^ […]

Continue reading →

CIFAR-10, CIFAR-100 dataset introduction

  Source code is uploaded on github. CIFAR-10 and CIFAR-100 are the small image datasets with its classification labeled. It is widely used for easy image classification task/benchmark in research community. Official page: CIFAR-10 and CIFAR-100 datasets In Chainer, CIFAR-10 and CIFAR-100 dataset can be obtained with build-in function. Setup code: 

  CIFAR-10 chainer.datasets.get_cifar10 […]

Continue reading →

Understanding convolutional layer

Source code is uploaded on github.The sample image is obtained from PEXELS. What is the difference between convolutional layer and linear layer? What kind of intuition is in behind of using convolutional layer in deep neural network? This hands on shows some effects by convolutional layer to provide some intution about what convolutional layer do. […]

Continue reading →

Basic image processing tutorial

Basic image processing for deep learning. Refer github for the source code. The sample image is obtained from PEXELS. If you are not familiar with image processing, you can read this article before going to convolutional neural network. OpenCV is image processing library which supports loading image in numpy.ndarray format, save image converting image color format (RGB, […]

Continue reading →